

Note

An environmentally benign indium (III) chloride catalysed one-pot synthesis of quinolines

Mazaahir Kidwai*, Vikas Bansal, Neeraj Kumar Mishra & Divya Bhatnagar

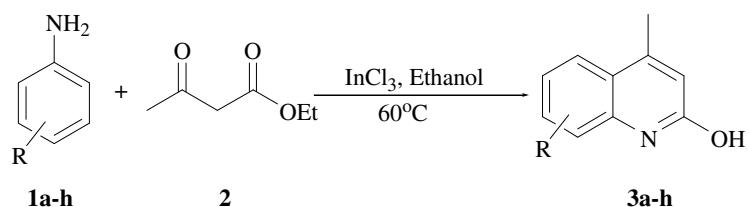
Green Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi 110 007, India

E-mail: kidwai.chemistry@gmail.com

Received 13 June 2008; accepted (revised) 30 January 2009

A convenient eco-friendly procedure for the quantitative synthesis of novel quinoline derivatives has been developed by a simple one-pot reaction of substituted anilines with β -ketoesters at 60°C in ethanol using recyclable indium chloride as catalyst. The reaction proceeds smoothly under solvent free conditions with quantitative yields.

Keywords: Indium chloride, quinolines, recyclability, eco-friendly, green chemistry


Recently, Lewis acidity associated with Indium chloride (III) enhanced its usage in organic synthesis¹ and has received considerable attention as non-toxic, recyclable and readily available catalyst for various organic transformations, affording the corresponding products in excellent yields with high selectivity². For many years, the synthesis of quinoline and its derivatives has been of considerable interest in organic and medicinal chemistry since a large number of natural products and drugs contain this heterocyclic nucleus³. In addition, quinolines are valuable synthons, used for the preparation of nano and meso structures with enhanced electronic and photonic properties⁴⁻⁸.

As part of the continuing effort towards the expeditious synthesis of biodynamic heterocycles^{9,10}, the possibility of developing a novel and efficient method to construct the quinoline scaffold became the

focus of interest. This is inspite of some methods such as the Skraup, Doebner-von Miller, Combes reaction and Friedlander being available for the synthesis of quinolines¹¹⁻¹⁵. Brønsted acids and several Lewis acids have been reported to be effective for the synthesis of quinolines¹⁶⁻²². However, many of these procedures also suffered from harsh reaction conditions, low yields, difficult work-up and in some cases high catalyst loading had to be employed in order to obtain a respectable yield. Thus, simple, eco-benign and efficient procedures for the synthesis of these important heterocycles are still in demand. Inspired by reports on catalytic applications of InCl₃ for organic transformations and the endeavour of this research group toward the development of new synthetic methods²³⁻²⁵, it is wished to report herein a novel and efficient procedure for the synthesis of quinoline.

Results and Discussion

An initial study was performed by the treatment of aniline **1a** with ethyl acetoacetate **2** in methanol in the presence of catalytic amounts of indium chloride (10 mole %) at RT (**Scheme I**). To our delight, the formation of 2-hydroxy-4-methylquinoline **3a** was observed. Complete conversion and 93% isolated yields were obtained after 30 min. Further studies established that 5 mole % of catalyst was equally efficient to perform the reaction (**Table I**). Moreover, it is noteworthy that this reaction could be run under normal air without loss of efficiency. Among the solvent screened, ethanol and methanol were demonstrated as the best solvent and further procedures were developed with ethanol as it is more environmentally benign as compared to methanol. This is because of high solubility of InCl₃ in polar solvents. Under solvent-free conditions, the reaction also proceeded smoothly to afford the corresponding

Scheme I — Synthesis of substituted quinolines

Table I — Evaluation of catalytic activity of InCl_3 on the synthesis of 6-substituted-4-methyl-quinolin-2-ol^a.

Entry	InCl_3 (X mole %)	Time (min)	Yield (%) ^b
1	0	4 hr	0
2	5	45	88
3	10	30	93
4	15	20	93
5	20	20	95

^aReaction conditions: aniline (**1a**, 1 mmole); ethyl acetoacetate (**2**, 1 mmole); InCl_3 (X mole %); solvent methanol; RT, 1 atm.

^bIsolated yields.

Table II — Screening of solvent on the synthesis of 6-substituted-4-methyl-quinolin-2-ol^a

Entry	Solvent	Time (min)	Yield (%) ^b
1	Methanol	45	88
2	Ethanol	35	86
3	Dichloromethane	70	64
4	Acetonitrile	55	72
5	Solvent-free condition	40	70

^aReaction conditions: aniline (**1a**, 1 mmole); ethyl acetoacetate (**2**, 1 mmole); InCl_3 (5 mole %); RT, 1 atm.

^bIsolated yields.

Table III — Effect of temperature on catalytic activity of InCl_3 on the synthesis of 6-substituted-4-methyl-quinolin-2-ol^a.

Entry	Temperature (°C)	Time (min)	Yield (%) ^b
1	RT	35	86
2	45	30	90
3	60	20	93
4	80 and above	20	94

^aReaction conditions: aniline (**1a**, 1 mmole); ethyl acetoacetate (**2**, 1 mmole); InCl_3 (5 mole %); solvent ethanol; 1 atm.

^bIsolated yields.

product, although the yield was slightly lower (**Table II**). In order to examine the effect of temperature, concentration of InCl_3 was kept constant at 5 mole % and the reaction was monitored at different temperatures as compiled in (**Table III**). At elevated temperatures using 5 mole % of InCl_3 gave better results in terms of yield and reaction times.

Table IV — InCl_3 promoted synthesis 6-substituted-4-methyl-quinolin-2-ol^a.

Entry	Ani-line	R	Time (min)	Product	Yield (%) ^b	m.p. (°C)
1	1a	H	20	3a	93	218-20
2	1b	4-F	25	3b	78	260-62
3	1c	4-CH ₃	40	3c	84	248-50
4	1d	4-OCH ₃	30	3d	91	256-58
5	1e	4-NO ₂	65	3e	70	>300
6	1f	4-COOH	40	3f	73	>300
7	1g	2-pyridinyl	30	3g	80	180-82
8	1h	2-naphthyl-amine	45	3h	87	270-72

^aReaction conditions: aromatic amines (**1a-h**, 1 mmole); ethyl acetoacetate (**2**, 1 mmole); InCl_3 (5 mole %); solvent ethanol; temperature 60°C; 1 atm.

^bIsolated yields.

It is important to stress that the catalyst was recycled and reused for four or five runs with only slight drop in activity. An additional starting material was added into the reaction mixture and reaction was continued for an additional 10 hr and which resulted in the formation of **3a** in excellent yields.

To demonstrate the generality of this method, the scope of this reaction under optimized conditions was investigated and it was found that structurally diverse aromatic amines with different substitution (both electron withdrawing and electron donating group) reacted with equal ease to produce a range of quinoline derivatives in excellent yields (**Table IV**).

Experimental Section

Melting points were determined using a Thomas Hoover melting point apparatus and are uncorrected. IR spectra were recorded on Perkin-Elmer FTIR-1710 spectrometer using KBr disc. ¹H NMR spectra were recorded on a Bruker Avance Spectrospin 300 (300 MHz) instrument using TMS as internal standard and chemical shift are in δ . Elemental analysis was performed on a Horeaus CHN Rapid analyzer. High resolution mass spectra (HRMS) were recorded on a Waters LCT Micromass and EI mass spectra were recorded on Jeol JHS-DX 303 instrument. All reactants were purchased from Sigma-Aldrich and Lancaster and used as received. Solvents used in reaction are double distilled using vacuum distillation.

Table V — Spectroscopic data for 6-substituted-4-methyl-quinolin-2-ol, **3a-h**

Compd	Mol. formula	HRMS (M+Na) ⁺	¹ H NMR (δ , CDCl ₃)
3a	C ₁₀ H ₉ NO	182.14	2.14 (s, 3H, CH ₃), 6.15 (s, 1H, CH), 7.33-7.45 (m, 4H, ϕ), 8.43 (s, 1H, NH)
3b	C ₁₀ H ₈ FNO	200.20	2.28 (s, 3H, CH ₃), 6.17 (s, 1H, CH), 7.22 (s, 1H, CH- ϕ), 7.53 (d, 1H, J = 7.7 Hz, CH- ϕ), 7.66 (d, 1H, J = 7.6 Hz, CH), 9.12 (s, 1H, NH)
3c	C ₁₁ H ₁₁ NO	195.88	2.28 (s, 3H, CH ₃), 2.43 (s, 3H, CH ₃), 6.25 (s, 1H, CH), 7.27 (s, 1H, CH- ϕ), 7.51 (d, 1H, J = 7.7 Hz, CH- ϕ), 7.54 (d, 1H, J = 7.5 Hz, CH), 9.10 (s, 1H, NH)
3d	C ₁₁ H ₁₁ NO ₂	212.12	2.38 (s, 3H, CH ₃), 3.82 (s, 3H, CH ₃), 6.43 (s, 1H, CH), 7.52 (s, 1H, CH), 7.63 (d, 1H, J = 7.6 Hz, CH), 7.81 (d, 1H, J = 7.6 Hz, CH) 8.82 (s, 1H, NH)
3e	C ₁₀ H ₈ N ₂ O ₃	227.23	2.25 (s, 3H, CH ₃), 6.14 (s, 1H, CH), 7.41 (s, 1H, CH), 7.65 (d, 1H, J = 7.4 Hz, CH), 7.78 (d, 1H, J = 7.6 Hz, CH), 8.42 (s, 1H, NH)
3f	C ₁₁ H ₉ NO ₃	225.82	2.28 (s, 3H, CH ₃), 6.13 (s, 1H, CH), 7.24 (s, 1H, CH), 7.48 (d, 1H, J = 7.8 Hz, CH), 7.83 (d, 1H, J = 7.3 Hz, CH), 9.46 (s, 1H, NH), 11.36 (s, 1H, COOH)
3g	C ₉ H ₈ N ₂ O	182.78	2.41 (s, 3H, CH ₃), 6.44 (s, 1H, CH), 7.88-8.96 (m, 3H, CH), 9.31 (s, 1H, NH)
3h	C ₁₄ H ₁₁ NO	208.75	2.33 (s, 3H, CH ₃), 6.03 (s, 1H, CH), 7.22-7.63 (m, 7H, CH)

General procedure for the synthesis of substituted quinolines, **3a-h**

In a 50 mL round bottom flask, substituted anilines **1a-h** (1 mmole), ethyl acetoacetate **2** (1 mmole) and 5 mole % InCl₃ in ethanol (15 mL) were mixed and the resulting solution was stirred at 60°C for the appropriate time as mentioned in (Table IV). After completion of the reaction as monitored by TLC, the reaction mixture was filtered and the crude product was subjected to purification by flash chromatography using a mixture of 20% ethyl acetate and 80% *n*-hexane as eluent to yield the quinolines **3a-h**. The purified product was recrystallized using appropriate solvent. The structure of all the products was unambiguously established on the basis of their spectral analysis (Table V).

References

- 1 Ghosh R, *Indian J Chem*, 40B, **2001**, 550.
- 2 Ranu B C, *Eur J Org Chem*, **2000**, 2347.
- 3 Katritzky A R & Rees C N, in *Comprehensive Heterocyclic Chemistry*, edited by A J Boulton & A McKillop, Vol. 2, (Pergamon Press, Oxford), **1984**.
- 4 Agrawal A K & Jenekhe S A, *Macromolecules*, **24**, **1991**, 6806.
- 5 Zhang X, Shetty A S & Jenekhe S A, *Macromolecules*, **32**, **1999**, 7422.
- 6 Jenekhe S A, Lu L & Alam M M, *Macromolecules*, **34**, **2001**, 7315.
- 7 Du W & Curran D P, *Org Lett*, **5**, **2003**, 1765.
- 8 Hoemann M Z, Kumaravel G, Xie R L, Rossi R F, Meyer S, Sidhu A, Cuny G D & Hauske J R, *Bioorg Med Chem Lett*, **10**, **2000**, 2675.
- 9 Kidwai M, Bansal V, Saxena A, Aerry S & Mozumdar S, *Tetrahedron Lett*, **47**, **2006**, 8049.
- 10 Kidwai M, Mothsra P, Mohan R & Biswas S, *Bioorg Med Chem Lett*, **15**, **2005**, 915.
- 11 Cho C S, Oh B H, Kim J S, Kim T J & Shim S C, *Chem Commun*, **2000**, 1885.
- 12 Jiang B & Si Y G, *J Org Chem*, **67**, **2002**, 9449.
- 13 Skraup Z H, *Chem Ber*, **13**, **1880**, 2086.
- 14 Friedlander P, *Chem Ber*, **15**, **1882**, 2572.
- 15 Mansake R H F & Kulka M, *Org React*, **7**, **1953**, 59.
- 16 Wu J, Xia H-G & Gao K, *Org Biomol Chem*, **4**, **2006**, 126.
- 17 Strekowski L, Czarny A & Lee H, *J Fluorine Chem*, **104**, **2000**, 281.
- 18 Hu Y Z, Zhang G & Thummel R P, *Org Lett*, **5**, **2003**, 2251.
- 19 Arcadi A, Chiarini M, Di Giuseppe S & Marinelli F, *Synlett*, **2003**, 203.
- 20 Walser A, Flynn T & Fryer R I, *J Heterocycl Chem*, **12**, **1975**, 737.
- 21 Arumugam P, Karthikeyan G, Atchudan R, Muralidharan D & Perumal P T, *Chem Lett*, **34**, **2005**, 314.
- 22 Wu J, Zhang L & Diao T N, *Synlett*, **2005**, 2653.
- 23 Kidwai M, Bansal V, Kumar A & Mozumdar S, *Green Chem*, **9**, **2007**, 742.
- 24 Kidwai M, Mishra N K, Bansal V, Kumar A & Mozumdar S, *Tetrahedron Lett*, **48**, **2007**, 8883.
- 25 Kidwai M & Bansal V, *Lett Org Chem*, **4**, **2007**, 519.